Extended target tracking using PHD filters

نویسنده

  • Karl Granström
چکیده

The world in which we live is becoming more and more automated, exemplified by the numerous robots, or autonomous vehicles, that operate in air, on land, or in water. These robots perform a wide array of different tasks, ranging from the dangerous, such as underground mining, to the boring, such as vacuum cleaning. In common for all different robots is that they must possess a certain degree of awareness, both of themselves and of the world in which they operate. This thesis considers aspects of two research problems associated with this, more specifically the Simultaneous Localization and Mapping (slam) problem and the Multiple Target Tracking (mtt) problem. The slam problem consists of having the robot create a map of an environment and simultaneously localize itself in the same map. One way to reduce the effect of small errors that inevitably accumulate over time, and could significantly distort the SLAM result, is to detect loop closure. In this thesis loop closure detection is considered for robots equipped with laser range sensors. Machine learning is used to construct a loop closure detection classifier, and experiments show that the classifier compares well to related work. The resulting slam map should only contain stationary objects, however the world also contains moving objects, and to function well a robot should be able to handle both types of objects. The mtt problem consists of having the robot keep track of where the moving objects, called targets, are located, and how these targets are moving. This function has a wide range of applications, including tracking of pedestrians, bicycles and cars in urban environments. Solving the mtt problem can be decomposed into two parts: one part is finding out the number of targets, the other part is finding out what the states of the individual targets are. In this thesis the emphasis is on tracking of so called extended targets. An extended target is a target that can generate any number of measurements, as opposed to a point target that generates at most one measurement. More than one measurement per target raise interesting possibilities to estimate the size and the shape of the target. One way to model the number of targets and the target states is to use random finite sets, which leads to the Probability Hypothesis Density (phd) filters. Two implementations of an extended target phd filter are given, one using Gaussian mixtures and one using Gaussian inverse Wishart (giw) mixtures. Two models for the size and shape of an extended target measured with laser range sensors are suggested. A framework for estimation of the number of measurements generated by the targets is presented, and reduction of giw mixtures is addressed. Prediction, spawning and combination of extended targets modeled using giw distributions is also presented. The extended target tracking functions are evaluated in simulations and in experiments with laser range data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering

In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood functi...

متن کامل

Clutter Removal in Sonar Image Target Tracking Using PHD Filter

In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...

متن کامل

Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets

The unified cardinalized probability hypothesis density (CPHD) filters for extended targets and unresolved targets are proposed. The theoretically rigorous measurementupdate equations for the proposed filters are derived according to the theory of random finite set (RFS) and finite-set statistics (FISST). By assuming that the predicted distributions of the extended targets and unresolved target...

متن کامل

Multi-target tracking with PHD filter using Doppler-only measurements

In this paper, we address the problem of multi-target detection and tracking over a network of separately located Doppler-shift measuring sensors. For this challenging problem, we propose to use the probability hypothesis density (PHD) filter and present two implementations of the PHD filter, namely the sequential Monte Carlo PHD (SMC-PHD) and the Gaussian mixture PHD (GM-PHD) filters. Performa...

متن کامل

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012